skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Top, Eva_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Plasmids promote adaptation of bacteria by facilitating horizontal transfer of diverse genes, notably those conferring antibiotic resistance. Some plasmids, like those of the incompatibility group IncP-1, are known to replicate and persist in a broad range of bacteria. We investigated a poorly understood exception, the IncP-1β plasmid pBP136 from a clinical Bordetella pertussis isolate, which quickly became extinct in laboratory Escherichia coli populations. Through experimental evolution, we found that the inactivation of a previously uncharacterized plasmid gene, upf31, drastically improved plasmid persistence in E. coli. The gene inactivation caused alterations in the plasmid regulatory system, including decreased transcription of the global plasmid regulators (korA, korB, and korC) and numerous genes in their regulons. This is consistent with our findings that Upf31 represses its own transcription. It also caused secondary transcriptional changes in many chromosomal genes. In silico analyses predicted that Upf31 interacts with the plasmid regulator KorB at its C-terminal dimerization domain (CTD). We showed experimentally that adding the CTD of upf31/pBP136 to the naturally truncated upf31 allele of the stable IncP-1β archetype R751 results in plasmid destabilization in E. coli. Moreover, mutagenesis showed that upf31 alleles encoded on nearly half of the sequenced IncP-1β plasmids also possess this destabilization phenotype. While Upf31 might be beneficial in many hosts, we show that in E. coli some alleles have harmful effects that can be rapidly alleviated with a single mutation. Thus, broad-host-range plasmid adaptation to new hosts can involve fine-tuning their transcriptional circuitry through evolutionary changes in a single gene. 
    more » « less